
ASYMPTOTIC ARITHMETIC FOR POLYNOMIALS AND

FORMAL POWER SERIES

ANDRZEJ CHMIELOWIEC

Abstract. This paper shows how to use fast Fourier transform (FFT) and chi-
nese remainder theorem (CRT) to speed up polynomial and formal power series
arithmetic. Method described in this article considers ability of use elements of
finite fields instead of complex roots of unity. Presented algorithm is very fast
and does not need floating point operations. Changing computation domain from
complex field to finite field gives also possibility to apply chinese remainder the-
orem. This observation is crucial for further speed up and parallelisation of the
algorithm.

1. Introduction

This article describes how to apply chinese remainder theorem to implement effi-
cient arithmetic in formal power series with integer coefficients. Proposed method is
well suited to compute Müller polynomials, which are necessary during elliptic curve
point counting algorithm – SEA. Coefficients of those polynomials are determined
using formal power series with very large precision. Application of asymptotically
fast arithmetic is crucial if we want to count elliptic curve points and determine ECC
(Elliptic Curve Cryptography) domains.

2. Roots of unity

We say that element x ∈ K is a root of polynomial A(X) ∈ K[X] iff A(x) = 0. In
particular, every field element x ∈ K which is root of polynomial

A(X) = Xn − 1

is called n-th root of unity. Moreover, if x is not a root of Xd − 1 for d < n then it is
called n-th primitive root of unity. The set Hn of all n-th roots of unity is a subgroup
in K×. This fact is very easy to proof. It is enough to show that if x, y ∈ Hn ⊂ K×

are solutions of equation Xn − 1 = 0 then
(

xy−1
)n

= 1.

This leads to conclusion that xy−1 ∈ Hn, which means that Hn is a group.

Example 1. Let K = C be a complex field. Polynomial X8 − 1 has 8 complex
roots which can be described as powers of ω8 = e2πi /8. This leads to the following

1

2 ANDRZEJ CHMIELOWIEC

factorization scheme

(X − 1) = (X − ω0
8)

(X2 − 1)
(X + 1) = (X − ω4

8)
(X4 − 1)

(X − ω2
8) = (X − ω2

8)
(X2 + 1)

(X + ω2
8) = (X − ω6

8)
(X8 − 1)

(X − ω8) = (X − ω1
8)

(X2 − ω2
8)

(X + ω8) = (X − ω5
8)

(X4 + 1)
(X − ω3

8) = (X − ω3
8)

(X2 + ω2
8)

(X + ω3
8) = (X − ω7

8)

The sequence of polynomial factors is not random. It is known that for every poly-
nomial of the form X2n

− 1 there exists a sequence of its factors such that

2k+2l

∏

j=2k

(X − ωij

n)

is binomial. This observation is crucial from the point of implementation of fast
Fourier transform.

In the next part of the article we will consider only those roots of unity whose
degree is a power of 2. From now on we assume that n = 2m and polynomial Xn− 1
has exactly n roots ω0, ω1, . . . , ωn−1.

Lemma 2. If Φ0,k = X − ωlk and lk =
∑m−1

j=0

(⌊

k
2j

⌋

mod 2
)

· 2m−1−j then

Φj,k = Φj−1,2kΦj−1,2k+1

are binomials with nonzero free coefficient and degree equal to 2j.

Before we proof the above lemma, we explain correlation between root power and
its position in the factorization sequence. In the lemma there is an expression

lk =

m−1
∑

j=0

(⌊

k

2j

⌋

mod 2

)

· 2m−1−j

which looks very complicated. Fortunately its interpretation is extremely easy. If
we write number k in the binary form with m digits (possibly with leading zeros)

k =
∑m−1

j=0 bj2
j, then lk =

∑m−1
j=0 bm−1−j2

j . It means that lk is constructed from k
by reversing order of bits in the representation.

FAST ARITHMETIC FOR FPS 3

Proof. From the recursion for Φj,k we have

Φj,k =

2j(k+1)−1
∏

i=2jk

Φ0,i =

2j(k+1)−1
∏

i=2jk

(

X − ωli
)

.

Based on the remark made before the proof, we can conclude that if i runs all numbers
from the set {2jk+ r : 0 ≤ r < 2j} then li runs all numbers from the set {2

m−jr+k′ :
0 ≤ r < 2j}. Where number k′ is made from k by bit reversion in the binary
representation and is equal to l2jk. Now we can write the following equation

Φj,k =

2j−1
∏

r=0

(

X − ω2m−jr+k′

)

.

Assuming that α = ωk′

and β = ω2m−j

we get simpler formula

Φj,k =
2j−1
∏

r=0

(X − αβr) = α2j
2j−1
∏

r=0

(

X

α
− βr

)

.

But powers of β generate all roots of unity of degree 2j. It means that product in

above equation represents polynomial (X/α)2
j

− 1 and final expression for Φj,k may
be assembled to the form

Φj,k = X2j

− α2j

= X2j

− ω2jk′

.

This ends the proof of the lemma. �

Example 3. We will show how the above lemma works in practice. Let K = C and
roots of unity be powers of ω8 = e2πi/8

k = 0 = (0, 0, 0)2 l0 = (0, 0, 0)2 = 0
k = 1 = (0, 0, 1)2 l1 = (1, 0, 0)2 = 4
k = 2 = (0, 1, 0)2 l2 = (0, 1, 0)2 = 2
k = 3 = (0, 1, 1)2 l3 = (1, 1, 0)2 = 6
k = 4 = (1, 0, 0)2 l4 = (0, 0, 1)2 = 1
k = 5 = (1, 0, 1)2 l5 = (1, 0, 1)2 = 5
k = 6 = (1, 1, 0)2 l6 = (0, 1, 1)2 = 3
k = 7 = (1, 1, 1)2 l7 = (1, 1, 1)2 = 7

Computed powers are the same as the ones from previous example.

3. Fast Fourier transform and polynomial multiplication

The main aim of this article is to show how FFT can be used to speed up arithmetic
in the rings of polynomials and formal power series. We will explain how the change
of polynomial representation leads to very efficient multiplication algorithms.

4 ANDRZEJ CHMIELOWIEC

3.1. Discrete Fourier transform. In this part we will show how to change poly-
nomial representation efficiently. Our aim is to represent polynomial as a set of
values in the roots of unity. During our consideration we will assume that n = 2m

and polynomial Φn(X) = Xn − 1 ∈ K[X] has exactly n roots, that are denoted by
ω0, ω1, . . . , ωn−1. The following lemma gives basic result which is going to be very
useful in the next part of the article

Lemma 4. Let x ∈ K and A, B, C, R ∈ K[X]. If A mod B = R and B mod C = 0,
then

A(x) = A mod (X − x) and A mod C = R mod C.

Proof. To proof first part we assume that A(X) =
∑n−1

j=0 ajX
j . The following relation

Xk = (Xk−1 + xXk−2 + · · ·+ xk−2X + xk−1)(X − x) + xk,

shows that Xk mod (X − x) = xk. But operation mod is natural homomorphism
of ring K[X], thus we have

A mod (X − x) =





n−1
∑

j=0

ajX
j



 mod (X − x)

=

n−1
∑

j=0

aj

(

Xj mod (X − x)
)

=

n−1
∑

j=0

ajx
j = A(x),

This ends the proof of the first part of lemma. From the second relation we know
that if A mod B = R, then exists polynomial D ∈ K[X] such that A = D · B + R.
If we add condition that B mod C = 0 then we conclude

A mod C = (D ·B + R) mod C

= (D mod C)(B mod C) + (R mod C)

= R mod C.

And this is the end of the proof. �

Lemmas 2 and 4 give very fast algorithm of finding polynomial values in the roots of
unity.

Theorem 5. (Discrete Fourier transform) Let A ∈ K[X] be polynomial of degree
less than n = 2m. We also assume that Φ0,k = X − ωlk for

lk =
m−1
∑

j=0

(⌊

k

2j

⌋

mod 2

)

· 2m−1−j

and

Φj,k = Φj−1,2kΦj−1,2k+1.

FAST ARITHMETIC FOR FPS 5

If the sequence Aj,k is defined as follows

Aj,k = Aj+1,⌊k/2⌋ mod Φj,k and Am,0 = A,

then all its elements can be computed using m · n multiplications in K and A0,k =
A(ωlk).

Proof. First we show that A0,k = A(ωlk). To do this we consider sequence of opera-
tions that leads to A0,k.

A0,k =
(

A1,⌊k/2⌋ mod Φ0,k

)

=
(

A2,⌊k/22⌋ mod Φ1,⌊k/2⌋

)

mod Φ0,k

...

=
((

. . .
(

Am,⌊k/2m⌋ mod Φm,⌊k/2m−1⌋

)

. . .
)

mod Φ1,⌊k/2⌋

)

mod Φ0,k

But k < n = 2m and Am,0 = A. This leads us to the relation

A0,k =
((

. . .
(

A mod Φm,⌊k/2m−1⌋

)

. . .
)

mod Φ1,⌊k/2⌋

)

mod Φ0,k.

Analysing formula for Φj,k we conclude that Φj,k | Φj+1,⌊k/2⌋ and thus Φ0,k | Φ1,⌊k/2⌋ |
· · · | Φm,⌊k/2m−1⌋. Based on lemma 4 we have

A0,k = A mod Φ0,k = A(ωlk).

To count multiplications necessary for sequence Aj,k determination we will use results
from lemma 2. Observe that polynomial Aj,k is determined by finding reduction of

Aj+1,⌊k/2⌋ modulo binomial Φj,k = X2j

− α2j

. This process needs 2j multiplications
in K

Aj+1,⌊k/2⌋ mod Φj,k =





2j+1−1
∑

i=0

aiX
i



 mod
(

X2j

− α2j
)

=

2j−1
∑

i=0

aiX
i + α2j

2j−1
∑

i=0

a2j+iX
i

=

2j−1
∑

i=0

(

ai + α2j

· a2j+i

)

X i.

This means that determination of single element Aj,k needs deg (Φj,k) multiplications
in K. For every recursion level there is a need to make n multiplications because
∏

k Φj,k = Φn = Xn − 1. There are m recursion levels and to find all Aj,k we have to
make m · n multiplications. �

The following example illustrates discrete Fourier transform in practice.

Example 6. Let K = F17. All elements of this field are 16-th roots of unity. In
this example we only use roots of degree 4: ω0 = 1, ω1 = 13, ω2 = 16, ω3 = 4. From

6 ANDRZEJ CHMIELOWIEC

previous considerations we get the following hierarchy of Φj,k polynomials.

Φ0,0 = X − 1
Φ1,0 = X2 − 1

Φ0,1 = X − 16
Φ2,0 = X4 − 1

Φ0,2 = X − 13
Φ1,1 = X2 − 16

Φ0,3 = X − 4

Suppose that we want to find values of polynomial A(X) = X3 + 2X2 + 3X + 4 in
points ω0, . . . , ω3. Making use of theorem 1 we get:

A2,0 = X3 + 2X2 + 3X + 4

A1,0 = A2,0 mod Φ1,0 = (X3 + 2X2 + 3X + 4) mod (X2 − 1)

= 4X + 6

A1,1 = A2,0 mod Φ1,1 = (X3 + 2X2 + 3X + 4) mod (X2 − 16)

= 2X + 2

A0,0 = A1,0 mod Φ0,0 = (4X + 6) mod (X − 1)

= 10 = A(1)

A0,1 = A1,0 mod Φ0,1 = (4X + 6) mod (X − 16)

= 2 = A(16)

A0,2 = A1,1 mod Φ0,2 = (2X + 2) mod (X − 13)

= 11 = A(13)

A0,3 = A1,1 mod Φ0,2 = (2X + 2) mod (X − 4)

= 10 = A(4)

3.2. Inverse discrete Fourier transform. To complete our considerations we have
to show how to determine inverse Fourier transform and how to describe polynomial
by its coefficients.

Theorem 7. (Inverse discrete Fourier transform) Let Φ0,k = X − ωlk ,

lk =
m−1
∑

j=0

(⌊

k

2j

⌋

mod 2

)

· 2m−1−j

and

Φj,k = Φj−1,2kΦj−1,2k+1.

Denote by A ∈ K[X] polynomial with degree less than n = 2m and assume that values

of A(ω0), A(ω1), . . . , A(ωn−1) are known. If sequence Aj,k is defined as follows

Aj,k = Aj+1,⌊k/2⌋ mod Φj,k and A0,k = A(ωlk),

then all its elements can be computed using 2·m·n multiplications in K and Am,0 = A.

FAST ARITHMETIC FOR FPS 7

Proof. From lemma 2 we know that binomials Φj,k have form X2j

−α2j

, where α may
be different for every Φj,k. Since Φj,k = Φj−1,2kΦj−1,2k+1 is a product of polynomials
with the same degree, then

Φj−1,2k = X2j−1

− α2j−1

and Φj−1,2k+1 = X2j−1

+ α2j−1

.

Determination of sequence Aj,k is impossible with formula given in the theorem,
because we have only values of A0,k. We need another condition which would allow
to determine sequence in reverse direction. The following relation gives necessary
formula

Aj,k =
1

2
(Aj−1,2k + Aj−1,2k+1) +

X2j−1

2α2j−1
(Aj−1,2k −Aj−1,2k+1) .

To prove the above equation it is enough to show that Aj−1,2k = Aj,k mod Φj−1,2k

and Aj−1,2k+1 = Aj,k mod Φj−1,2k+1. But it is obvious since

Aj,k mod Φj−1,2k =
(

1

2
(Aj−1,2k + Aj−1,2k+1) +

X2j−1

2α2j−1
(Aj−1,2k −Aj−1,2k+1)

)

mod
(

X2j−1

− α2j−1
)

=

1

2
(Aj−1,2k + Aj−1,2k+1) +

1

2
(Aj−1,2k −Aj−1,2k+1) = Aj−1,2k

Aj,k mod Φj−1,2k+1 =
(

1

2
(Aj−1,2k + Aj−1,2k+1) +

X2j−1

2α2j−1
(Aj−1,2k −Aj−1,2k+1)

)

mod
(

X2j−1

+ α2j−1
)

=

1

2
(Aj−1,2k + Aj−1,2k+1)−

1

2
(Aj−1,2k −Aj−1,2k+1) = Aj−1,2k+1.

One can see that reverse formula needs 2 times more multiplications. Thus total
number of multiplications for inverse discrete Fourier transform is equal to 2·m·n. �

Fast Fourier transform allows to construct efficient method for polynomial multipli-
cation. Idea of this algorithm is very simple and can be described in three steps.

(1) Transformation of polynomials A, B ∈ K[X].
(2) Scalar multiplication of point values.
(3) Inverse transformation of multiplication result.

4. Asymptotically fast arithmetic in the ring of formal power series

In this section we will describe fast methods for multiplication and division in the
ring of formal power series with integer coefficients. In our considerations we assume
that only n first positions of power series are significant and n is a power of 2. This
means in fact that it is arithmetic with precision n. Multiplication of two power series
with limited precision looks the same as multiplication of two polynomials. What we
have to do is finding finite field Fp in which computations would be done. Prime p
should be large enough to eliminate modular reduction during multiplication process.
It means that p must satisfy two following conditions:

8 ANDRZEJ CHMIELOWIEC

(1) 4R2 · ⌊log2 n + 1⌋ < p – there is no modular reduction in the result of compu-
tations,

(2) p = 2m+1r + 1 for some 2m+1 ≥ 2n – there are roots of unity well suited for
discrete Fourier transform.

Changing complex number field to finite field can be regarded as nonsense movement.
But this operation gives ability to remove expensive floating point operations and
substitute them for fast integer arithmetic. This leads to faster algorithms because
floating point multiplication is about 30 times slower than integer multiplication on
Intel Core 2 processors. So, there are two main reasons for applying this kind of field:

(1) increase in speed of algorithm,
(2) elimination of error control during floating point operations.

Of course there is a question if this method is really faster? In the case of complex
field we have real floating point multiplications, but single multiplication in finite
field consists of integer multiplication and modular reduction. The problem of mod-
ular reduction can be solved in two different ways. First idea is to find such prime
number for which reduction can be done using only few additions and subtractions.
There are many such primes, for example 2224 − 296 + 1 = 296(2128 − 1) + 1 and
2512 − 232 + 1 = 232(2480 − 1) + 1. The second idea is based on Montgomery multi-
plication algorithm [2]. This method can be applied for odd modules and it does not
need integer division to perform modular reduction. Special procedure gives ability
to compute reduction with only two multiplications. Application of classic modular
reduction is also possible. This approach does not change asymptotic complexity of
entire algorithm, but is hard to implement in efficient way [4]. This is the reason
why we recommend using field defined by prime with special form and extremely fast
modular reduction.

Now we calculate computational complexity of presented method. As we mentioned
earlier, power series multiplication consists of: Fourier transform, scalar multiplication
and inverse Fourier transform. In all those operations the main cost is related with
multiplication in field Fp. Thus we estimate computational complexity by the number
of necessary field multiplications.

(1) Fourier transform of two power series with n coefficients – 2n log(n) multipli-
cations in Fp.

(2) Scalar multiplication of two vectors with 2n coefficients – 2n multiplications
in Fp.

(3) Inverse Fourier transform of the result to the power series with 2n coefficients
– n log(n) multiplications Fp.

We can see that cost of formal power series asymptotic multiplication is about n(2 +
3 log(n)) multiplications in Fp. But when it is reasonable to use asymptotic method
instead of classic algorithm? To answer this question, first we have to compare classic
integer multiplication with Fp multiplications. We will consider the following two
cases:

(1) Multiplication in Fp for special form of the prime p, which is about 6 times
more expensive than integer coefficient multiplication. In this cast FFT is

FAST ARITHMETIC FOR FPS 9

better than classic if

6 · n(2 + 3 log(n)) < n2.

It means that if n > 140 then asymptotic method is faster than classic one.
(2) Multiplication in Fp with Montgomery representation, which is about 12 times
more expensive than integer coefficient multiplication. In this cast FFT is
better than classic if

12 · n(2 + 3 log(n)) < n2.

It means that if n > 324 then asymptotic method is faster than classic one.

To decrease complexity of the above algorithm we will use chinese remainder theorem.
This approach gives ability to swap single multiplication in Fp by many multiplications
in much smaller fields Fpi

. To achieve our goal we first have to find prime numbers
pi which will be well suited for this method. Quick look at the conditions for p gives
the following requirements:

(1) 4R2 · ⌊log2 n + 1⌋ <
∏

pi – there is no modular reduction in the result of
computations,

(2) pi = 2m+1ri + 1 for some 2m+1 ≥ 2n – there are roots of unity well suited for
discrete Fourier transform.

We show that this purpose is much more efficient than method proposed at the be-
ginning of this section. To get maximum performance there is a need to choose such
primes pi which can be stored in single processor register. It is easy to achieve with
32-bit processors and we do not discuss this aspect wider. Suppose now that we have k
prime numbers pi that have the same bit length and meet conditions described above.
New multiplication algorithm for formal power series can be expressed as follows:

(1) Coefficient reduction modulo every chosen prime – c1k
2n multiplications in

Fpi
.

(2) For all i ∈ {1, . . . , k} we make FFT multiplication:
(a) Fourier transform of two power series with n coefficients – 2n log(n)
multiplications in Fpi

,
(b) scalar multiplication of two vectors with 2n coefficients – 2n multiplica-
tions in Fpi

,
(c) inverse Fourier transform of the result to the power series with 2n coef-
ficients – n log(n) multiplications Fpi

.
(3) Use chinese remainder theorem to get back result coefficients – c2k

2n multi-
plications in Fpi

.

Since numbers pi have the same bit size, then we assume that multiplication cost in
every field Fpi

is equal. This means that the total complexity of new algorithm is
equal to

c1k
2n + kn(2 + 3 log(n)) + c2k

2n

multiplications in Fpi
. To compare this result with the previous version of the al-

gorithm we have to know that single multiplication in field Fp is equivalent to k2

10 ANDRZEJ CHMIELOWIEC

multiplications in Fpi
. Thus complexity of new method can be also expressed as

n(2 + 3 log(n))

k
+ n(c1 + c2)

multiplications in Fp. One can see that application of chinese remainder theorem leads
us to algorithm which is asymptotically k times faster then the original. Of course
constants c1 and c2 play a crucial role in the practical applications. Thus number
of coefficients for which new algorithm is really faster have to be determined during
numerical experiments. We cannot give values of c1 and c2 in direct form, because
they are strongly related to processor architecture and algorithms used in points 1
and 3.

Division of formal power series needs finding an inverse. Using classical method
to compute inverse is unacceptable, because we lose all performance given by FFT
multiplication algorithm. Fortunately there exists a very simple method which allows
to compute invert power series – simple Newton iteration method to invert elements
of p-adic rings [1]. This algorithm is fast and uses only multiplications, additions and
subtractions. To invert formal power series with n coefficients we need about log n
iterations. If we have series

A =

n−1
∑

j=0

ajX
j,

for which first coefficient is invertible, then the following procedure computes inverted
series with precision n:

1. m← 0;
2. B ← 1

a0
;

3. while 2m < n do

3.1. B ← 2B −B2
∑2m

j=0 ajX
j;

3.2. m← m + 1;
4. return B;

One can see that every iteration of Newton method doubles precision of the result.

5. Summary

The second version of the algorithm for power series multiplication has two main
advantages:

(1) smaller numerical complexity,
(2) possibility to make all computations parallel.

Chinese remainder theorem gives possibility to split computations during many pro-
cessors or even computers. All parts of the algorithm responsible for operations in
Fpi
fields can be distributed and run parallel on different machines.

Proposed method is well suited to compute Müller polynomials, that are necessary
during elliptic curve point counting algorithm – SEA. Coefficients of those polynomi-
als are determined using formal power series with very large precision. Application of

FAST ARITHMETIC FOR FPS 11

asymptotically fast arithmetic is crucial if we want to count elliptic curve points and
determine ECC (Elliptic Curve Cryptography) domains.

We should also mention the possibility of FFT parallelisation [5]. It is quite easy to do
because there is no correlation between coordinates of transformed vector. Especially
efficient architecture we can get using SIMD instructions (Single Instruction Multiple
Data). This kind of instructions is dedicated to make the same operation on many
arguments and this is the case in FFT.

References

[1] Fernando Q. Gouvêa, p-adic Numbers, Springer-Verlag, 1993.
[2] Alfred J. Menezes, Paul C. Van Oorschot, Scott A. Vanstone, Handbook of Applied Cryptography,
CRC Press, 1997.

[3] Thomas H Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, Introduction to
Algorithms, MIT Press, 2003.

[4] Donald E. Knuth, Art of Computer Programming, Addison-Wesley Professiona, 1998.
[5] Ananth Grama, Anshul Gupta, George Karypis, Vipin Kumar, Introduction to Parallel Com-
puting, Addison Wesley, 2003.

E-mail address: andrzej.chmielowiec@cmmsigma.eu

